Since Go's release in 2009 many companies (besides Google, of
course) have used the language to build cool stuff. Join Gustavo
Niemeyer from Canonical, Keith Rarick from Heroku, Evan Shaw
from Iron.io, and Patrick Crosby from StatHat as they share
their first-hand experience using Go in production
environments

About Andrew Gerrand
View full profile

O

Go in production

Andrew Gerrand - Google
Gustavo Niemeyer - Canonical
Keith Rarick - Heroku

Evan Shaw - Iron.io

Patrick Crosby - StatHat

Google @l1e)

Gustavo Niemeyer

Canonical

Jugv

W/ e
cﬁrﬁe:’?aﬂbss}}wa
i g O

/(hi old Style

o&\ mmcgcmmﬁ .

) http://go0.gl/KZsoo

http://goo.gl/KZsoo

(\)@ople /10\0(mochines. . .
Vi R

/')
¥ hetp://goo.gl/fzsoo D\/ \ ——-—0\ / ’B

/ﬂ')e,y So\vz: -me nemes. ..

/

———

N L
%joa MW/

O O

Y http//goog/KZS‘g’_\//k -—-\/‘B

/n\ese mechines /vcd Congq

(les. .

4 L/
|
= =/ ||
=5 -
O
(\ http://goo.gl/KZ4o0 \/1 '_,_O\‘/’B 11111

(\ http://goo.gl/KZ§o0

Y http://goo.gl/KZsoo 13/69

Then {hes were

~ 7Qw ISSVES ..

(\ http://goo.gl/KZsoo 14/69

Doopn
UO0Oonadp
O0onop
Ao oo
Qanooln
QoD
DO gopna
QO Qoo
UDDoooQn
Oonopo
QOO bpo
ORI 0Ooo
oDgDhnob
DOgdgna

L0 dve names...

1¢ becore o bit hard.

15/69

(\ http://goo.gl/KZsoo

17/69

(\ http://goo.gl/KZsoo

Y http://goo.gl/KZsoo . 18/689

99999

1153‘{}“ add.- celoton app moogo

R >

Oo—

(\ http://goo.gl/KZsoo

22222

http://goo.gl/KZsoo

23/69

)) http://goo.gl/KZsoo 24789

(\ http://goo.gl/KZsoo

22222

{ ntip://goo.gl/iKzsoo 26/69

Qaﬁag e___ugryfh@g

22222

6rnor checKinﬁ .

\/, cYe = 'F(>
if erc = nil {

http://goo.gl/KZsoo . 28/69

L,)L,rotoﬁ&gf WWC{ 0916

.. and g,o_t{: an.-

-Qurei {ture? = ?,ng'twaﬁch(e?)

cellbeek]
\\ caJ lbeckl

(\ http://goo

99999

How about one_podh:

rza&,, ch = 2k GetWakeh()

_'ement = &ch

Y http://goo.gl/KZsoo . 30/69

2 &
quéc‘f"c 60&‘1’55/9
Qe Simp'e
/rzs W _,;'/,:
7~ %Og\ ‘{it‘

33333

Keith Rarick

Heroku

What is Heroku? 7
at is Heroku thI’OkU

- Paas for web applications in all languages

- 1.9 million apps

- About 85 employees

- Each active app runs one or more “dynos” - lightweight process containers

{ nhttp://goo.glikzsoo 34/69

Routing Table

- Changes whenever a Heroku dyno starts, stops, or moves
For example, heroku scale web=5

- >1.9 million Heroku apps; a fraction of these are active at any time
Plenty of churn

Routing Table Service

- Originally all Ruby

- Accepts updates from the process manager

- HTTP router gets state from HTTP calls to this service
- Initial JSON dump to each HTTP router instance

- Followed by a stream of updates

(\ http://goo.gl/KZsoo 36/69

Internal routing API

updates Frontend

router

I

|

|

|

|

i |
Streaming |
|

|

I

|

|

Heroku API Frontend

router

F

Frontend
router

e]

Postgres

N nhttp://goo.gl/kzsoo 37/69

The Problem

- Route lookups are fast - no IPC
- But bootstrapping a new router instance is slow
- Why? Generating the initial dump

Enter Go

- Goal: drop-in replacement for the “streaming updates” piece
- Easy enough to play with during a single afternoon
- Working prototype after a couple of hours

Heroku API

(h http://goo.gl/KZsoo

Internal routing API

Streaming

updates

Frontend
router

e N

Frontend
router

Postgres

Frontend
router

40/69

Slam Dunk

- 10x speedup
- Generating process (in Go) is no longer the bottleneck

- (Nor is the network)
Easy to deploy and monitor, works great, so now in production

(\ http://g00.gl/KZsoo 41/69

Go at Heroku

- Started with experiments and side projects
- Now using Go for a handful of production services
- The list is growing

Evan Shaw

lron.io

iron.i

- Cloud application services
Remove infrastructure worries
Enable small teams to do big things

(\ http://goo.gl/KZsoo 44/69

ironWorker-

- Massively parallel worker platform

- API originally written with Ruby on Rails
+ It was too slow

- Rewriting it in Go made it faster

{ hip:r/goo.glikzsoo 45/69

Other products

- lronMQ, scalable message queue
- IronCache, distributed key/value store
- REST/HTTP API and text protocol support

The flow of IronWorker tasks

Runner
"
Worker Worker
Iron:flrker IronMQ »1 Runner
request parameters parameters
_
Runner

Handling an HTTP request

- Compose HTTP handlers
- Authentication

- Database connection sharing

- Statistics and usage

Authentication

-

Statistics/Usage

Database
Connection

End Validation /
Handling

(\ http://goo.gl/KZso0

48/69

Concurrency

- HTTP requests handled in separate goroutines by the HTTP package
- For text protocols, one goroutine per client connection
- Asynchronous I/0 is automatic

Concurrency as an optimization

- Non-critical operations can be moved to a separate goroutine

- Even less critical operations can be batched together in a dedicated
goroutine

Concurrency as an optimization

Before:

func handler(w http.ResponseWriter, r xhttp.Request) { m
projectld := getProjectId(r)
updateStatistics(projectId)

Y/
¥
After:
func handler(w http.ResponseWriter, r *http.Request) { m
go func() {
projectld := getProjectId(r)
go updateStatistics(projectId)
1O
/P
¥

(‘ http://goo.gl/KZsoo 51/69

Why Go?

Fast

Still reasonably expressive
Rich standard library

Not tied to a VM
Awesome

Patrick Crosby

StatHat

STAT HAT

www.stathat.com @stat hat

Track any stat with one line of code

r
i) http://goo.gl/KZsoo

Image credits: Paltrow
by Andrea Raffin, Pitt
by Thomas Peter
Schulzen, Jolie by
Georges Biard, Aniston
by Angela George

15 different languages

StatHat: :API.ez_post_count("reply count -~ female to male", "info@stathat.com", 1)

Pytl stathat.ez_post_count('info@stathat.com', 'reply count - female to male', 1)
stathat.PostEZCount("reply count -~ female to male", "info@stathat.com", 1)

wvaScript _StatHat.push(['_trackCount', 'STATKEY', 1]);

) stathat. trackEZCount("info@stathat,.com”, "reply count - female to male", 1, function(status, json)
{});
<img src="http://api.stathat,com/c?ukey=USERKEY&Kkey=STATKEY&count=1" style="display:none;" width="1"
height="1"/>
[StatHat postEZStat:@"reply count - female to male" withCount:1.0 forUser:@"info@stathat.com"
delegate:self];
stathat_ez_count('info@stathat.com', ‘'reply count - female to male', 1);

iva StatHat.ezPostCount("info@stathat.com", "reply count -~ female to male”, 1.0);
$ curl ~d "stat=reply count - female to maleSemail=info@stathat.com&count=1" http://api.stathat.com/ez
vget $ wget ——post-data "stat=reply count - female to malelemail=info@stathat.com&count=1"

http://api.stathat.com/ez
(stathat-ez-count "info@stathat.com" "reply count - female to male" 1)
StatHat.Post.EzCounter("info@stathat.com", “reply count - female to male", 1);
stathat_ez_count("info@stathat.com", "reply count - female to male", 1);
stathat.ez_count("info@stathat.com", "reply count - female to male", 1)

Time-series charts

Histograms

GitHub Archive

Embed charts
on any site

Track anything

@ Servers: load average, free memory, disk space, ping to
google, number of processes

® Messages: size, time spent composing, reply counts,
distance between users, age

® Requests: processing time, error occurred, number of
calls, query time

@ Other: number of jazz songs played, API calls, secs
mobile app active, session length, weather, cups of tea,
distance mouse travelled

Hn-//lonn ol/K7<nn

99.9% Pure Go

@® web: net/http servers, html/template
@ data collection: net /http servers

@® backend: all services communicate using net/

rpc

Why Go?

@ fast

@ resource friendly
@ casy to deploy
® fun

Architecture overview

(“info@stathat.com”,
“msg reply count”, 1)

http

——

(& R

data
collection

. J
net/http servers

rpc

\.

chart
servers

J

%

\.

dataset

services
W,

e

\&

cache
servers

web
service

J/

net/ http servers

alert & report
tools

J

-

email

Data collection service

app
lhttp
api.stathat.com \P¢
[/ez /c /v J ?:
.| update dataset
/ /@ [channel 4 eervices
[cache]
\{:serialize J

@ goroutine

pool

Deployment is easy

® Go binaries are self-contained
® No shared libraries, no gems, no dependencies

® go tool package install

StatHat deployment

® g1t post-receive hook

® tests and compiles everything
® makes bundle

@ rsyncs bundle to servers

@ informs servers

Thanks

Sign up:
stathat.com/io2012

Open source Go code:
stathat.com/src

Get 1n touch:

patrick@stathat.com
@stat hat

in://g00.gl/KZso0

Q&A

Questions: http://goo.gl/KZsoo

Andrew Gerrand - Google
Gustavo Niemeyer - Canonical
Keith Rarick - Heroku

Evan Shaw - Iron.io

Patrick Crosby - StatHat

