Since Go's release in 2009 many companies (besides Google, of
course) have used the language to build cool stuff. Join Gustavo
Niemeyer from Canonical, Keith Rarick from Heroku, Evan Shaw
from Iron.io, and Patrick Crosby from StatHat as they share
their first-hand experience using Go in production
environments
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Go in production
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Gustavo Niemeyer

Canonical
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Keith Rarick

Heroku




What is Heroku? 7
at is Heroku thI’OkU

- Paas for web applications in all languages

- 1.9 million apps

- About 85 employees

- Each active app runs one or more “dynos” - lightweight process containers
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Routing Table

- Changes whenever a Heroku dyno starts, stops, or moves
For example, heroku scale web=5

- >1.9 million Heroku apps; a fraction of these are active at any time
Plenty of churn



Routing Table Service

- Originally all Ruby

- Accepts updates from the process manager

- HTTP router gets state from HTTP calls to this service
- Initial JSON dump to each HTTP router instance

- Followed by a stream of updates
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The Problem

- Route lookups are fast - no IPC
- But bootstrapping a new router instance is slow
- Why? Generating the initial dump



Enter Go

- Goal: drop-in replacement for the “streaming updates” piece
- Easy enough to play with during a single afternoon
- Working prototype after a couple of hours



Heroku API
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Slam Dunk

- 10x speedup
- Generating process (in Go) is no longer the bottleneck

- (Nor is the network)
Easy to deploy and monitor, works great, so now in production
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Go at Heroku

- Started with experiments and side projects
- Now using Go for a handful of production services
- The list is growing



Evan Shaw

lron.io




iron.i

- Cloud application services
Remove infrastructure worries
Enable small teams to do big things
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ironWorker-

- Massively parallel worker platform

- API originally written with Ruby on Rails
+ It was too slow

- Rewriting it in Go made it faster
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Other products

- lronMQ, scalable message queue
- IronCache, distributed key/value store
- REST/HTTP API and text protocol support



The flow of IronWorker tasks

Runner
"
Worker Worker
Iron:flrker IronMQ »1 Runner
request parameters parameters
\_
Runner




Handling an HTTP request

- Compose HTTP handlers
- Authentication

- Database connection sharing

- Statistics and usage

Authentication

-

Statistics/Usage

Database
Connection

End Validation /
Handling
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Concurrency

- HTTP requests handled in separate goroutines by the HTTP package
- For text protocols, one goroutine per client connection
- Asynchronous I/0 is automatic



Concurrency as an optimization

- Non-critical operations can be moved to a separate goroutine

- Even less critical operations can be batched together in a dedicated
goroutine



Concurrency as an optimization

Before:

func handler(w http.ResponseWriter, r xhttp.Request) { m
projectld := getProjectId(r)
updateStatistics(projectId)

Y/
¥
After:
func handler(w http.ResponseWriter, r *http.Request) { m
go func() {
projectld := getProjectId(r)
go updateStatistics(projectId)
1O
/P
¥
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Why Go?

Fast

Still reasonably expressive
Rich standard library

Not tied to a VM
Awesome
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STAT HAT

www.stathat.com @stat hat

Track any stat with one line of code
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15 different languages

StatHat: :API.ez_post_count("reply count -~ female to male", "info@stathat.com", 1)

Pytl stathat.ez_post_count('info@stathat.com', 'reply count - female to male', 1)
stathat.PostEZCount("reply count -~ female to male", "info@stathat.com", 1)

wvaScript  _StatHat.push(['_trackCount', 'STATKEY', 1]);

) stathat. trackEZCount("info@stathat,.com”, "reply count - female to male", 1, function(status, json)
{});
<img src="http://api.stathat,com/c?ukey=USERKEY&Kkey=STATKEY&count=1" style="display:none;" width="1"
height="1"/>
[StatHat postEZStat:@"reply count - female to male" withCount:1.0 forUser:@"info@stathat.com"
delegate:self];
stathat_ez_count('info@stathat.com', ‘'reply count - female to male', 1);

iva  StatHat.ezPostCount("info@stathat.com", "reply count -~ female to male”, 1.0);
$ curl ~d "stat=reply count - female to maleSemail=info@stathat.com&count=1" http://api.stathat.com/ez
vget  $ wget ——post-data "stat=reply count - female to malelemail=info@stathat.com&count=1"

http://api.stathat.com/ez
(stathat-ez-count "info@stathat.com" "reply count - female to male" 1)
StatHat.Post.EzCounter("info@stathat.com", “reply count - female to male", 1);
stathat_ez_count("info@stathat.com", "reply count - female to male", 1);
stathat.ez_count("info@stathat.com", "reply count - female to male", 1)



Time-series charts



Histograms



GitHub Archive

Embed charts
on any site



Track anything

@ Servers: load average, free memory, disk space, ping to
google, number of processes

® Messages: size, time spent composing, reply counts,
distance between users, age

® Requests: processing time, error occurred, number of
calls, query time

@ Other: number of jazz songs played, API calls, secs
mobile app active, session length, weather, cups of tea,
distance mouse travelled
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99.9% Pure Go

@® web: net/http servers, html/template
@ data collection: net /http servers

@® backend: all services communicate using net/

rpc



Why Go?

@ fast

@ resource friendly
@ casy to deploy
® fun



Architecture overview
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Data collection service
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Deployment is easy

® Go binaries are self-contained
® No shared libraries, no gems, no dependencies

® go tool package install



StatHat deployment

® g1t post-receive hook

® tests and compiles everything
® makes bundle

@ rsyncs bundle to servers

@ informs servers



Thanks

Sign up:
stathat.com/io2012

Open source Go code:
stathat.com/src

Get 1n touch:

patrick@stathat.com
@stat hat
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Q&A

Questions: http://goo.gl/KZsoo

Andrew Gerrand - Google
Gustavo Niemeyer - Canonical
Keith Rarick - Heroku

Evan Shaw - Iron.io

Patrick Crosby - StatHat




